Displacement damage effects in silicon MEMS at high proton doses
نویسندگان
چکیده
We report on a study of the sensitivity of silicon MEMS to proton radiation and mitigation strategies. MEMS can degrade due to ionizing radiation (electron-hole pair creation) and non-ionizing radiation (displacement damage), such as electrons, trapped and solar protons, or cosmic rays, typically found in a space environment. Over the past few years there has been several reports on the effects of ionizing radiation in silicon MEMS, with failure generally linked to trapped charge in dielectrics. However there is near complete lack of studies on displacement damage effects in siliconMEMS: how does silicon change mechanically due to proton irradiation? We report on an investigation on the susceptibility of 50 μm thick SOI-based MEMS resonators to displacement damages due to proton beams, with energies from 1 to 60 MeV, and annealing of this damage. We measure ppm changes on the Young’s modulus and Poisson ratio by means of accurately monitoring the resonant frequency of devices in vacuum using a Laser Doppler Vibrometer. We observed for the first time an increase (up to 0.05%) of the Young’s modulus of single-crystal silicon electromagnetically-actuated micromirrors after exposure to low energy protons (1-4 MeV) at high absorbed doses ~ 100 Mrad (Si). This investigation will contribute to a better understanding of the susceptibility of silicon-based MEMS to displacement damages frequently encountered in a space radiation environment, and allow appropriated design margin and shielding to be implemented. Keyword: MEMS reliability, radiation effects, displacement damage, NIEL, mechanical effects
منابع مشابه
Making MEMS more suited for Space: Assessing the proton-radiation tolerance of structural materials for microsystems in orbit
We report on the susceptibility of structural MEMS materials to proton radiation damage. Radiation tests at spacerelevant doses were conducted on MEMS resonators. The two materials examined were single crystal silicon and SU-8, which are both in widespread use in microsystems. The resonance frequency was monitored for measuring minute changes of the Young’s modulus. No radiation-induced changes...
متن کاملMonte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays Using the FLUKA Code
In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...
متن کاملSingle Crystal Silicon MEMS Microactuator for High Density Hard Disk Drive
A single crystal silicon MEMS microactuator for high density hard disk drives is described in this paper. The microactuator is located between a slider and a suspension, and drives the slider on which a magnetic head is attached. The MEMS actuator is fabricated by improved LISA process. It has an electrically isolated 20:1 (40μm thick, 2μm width) high aspect ratio structure directly processed f...
متن کاملThe Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone
In this paper the effect of corrugated diaphragm on performance of MEMS microphone is described. The corrugated diaphragm is modeled in order to improve the sensitivity of micromachined silicon acoustic sensor. Analytical analyzes have been carried out to derive mathematic expressions for the mechanical sensitivity and displacement of corrugated diaphragm with residual stress. It is shown that ...
متن کاملTowards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor.
Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of 〈111〉 aligned silicon nanowire arrays fully...
متن کامل